Scattering and dip angle decomposition in relation with subsurface offset extended wave-equation migration
نویسندگان
چکیده
An angle-dependent reflection coefficient is recovered by seismic migration in the angle-domain. We propose a post-migration technique for computing scattering and dip angle common-image gathers (CIGs) from seismic images, extended by the subsurface offset, in relation with wave-equation migration methods. Our methodology suggests a system of Radon transform operators by introducing local transform relations between the subsurface offset image and the angle-domain components. In addition to the commonly used decomposition of the scattering-angle, the methodology associates the wave-equation migration with dip-domain images as well. The same post-migration subsurface offset image is employed to decompose scattering and dip angle CIGs individually, or to decompose a multi-angle CIG by showing simultaneously both angles on the gather's axis. A unique dip-angle response of seismic reflections is introduced as a spot-like signature, focused at the specular dip of the subsurface reflector. It differs from the well-studied smile-like response usually associated with reflections in the dip-domain. The contradiction is clarified by the nature of the subsurface offset extension, and by emphasizing that the angles are decomposed from the subsurface offset image after the imaging condition, without directly involving the propagating incident and scattered wavefields. Several synthetic and field data examples demonstrate the robustness of our decomposition technique, by handling various subsurface models, including seismic diffractions. It is our belief that dip-angle information, decomposed by wave-equation migration, would have a great impact in making the scattering-angle reflection coefficient more reliable and noise-free, in addition to the acceleration of wave-equation inversion methods.
منابع مشابه
Dip-angle decomposition in relation with subsurface offset extended wave-equation migration
Our proposal provides post-migration techniques for computing angle-domain common-image gathers (CIGs) from seismic images, extended by the subsurface offset, in relation with wave-equation migration methods. In addition to the commonly used decomposition of the scattering-angles, we associate the wave-equation migration with dip-domain image gathers as well. Our methodology suggests a system o...
متن کاملScattering and dip angle decomposition based on subsurface offset extended wave-equation migration
An angle-dependent reflection coefficient is recovered by seismic migration in the angle domain. We have developed a postmigration technique for computing scattering and dip angle common-image gathers (CIGs) from seismic images, extended by the subsurface offset, based on wave-equation migration methods. Our methodology suggests a system of Radon transform operators by introducing local transfo...
متن کاملWide-azimuth angle gathers for anisotropic wave-equation migration
Extended common-image-point gathers (CIP) constructed by wide-azimuth TI waveequation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The aperture and azimuth angles are derived from the extended images using analytic relations between the spaceand time-lag extensions using inform...
متن کاملA transversely isotropic medium with a tilted symmetry axis normal to the reflectora
The computational tools for imaging in transversely isotropic media with tilted axes of symmetry (TTI) are complex and in most cases do not have an explicit closed-form representation. As discussed in this paper, developing such tools for a TTI medium with tilt constrained to be normal to the reflector dip (DTI) reduces their complexity and allows for closed-form representations. We show that, ...
متن کاملComparison of angle decomposition methods for wave-equation migration
Angle domain common image gathers offer advantages for subsurface image analysis in complex media. We compare two angle decomposition methods using extended images and wave propagation directions based on Poynting vectors of the source and receiver wavefields. We evaluate the ability of each method to produce accurate and efficient angle gathers for wave-equation migration in the presence of mu...
متن کامل